Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Wellcome open research ; 6, 2021.
Article in English | EuropePMC | ID: covidwho-2046342

ABSTRACT

Policymakers in Africa need robust estimates of the current and future spread of SARS-CoV-2. We used national surveillance PCR test, serological survey and mobility data to develop and fit a county-specific transmission model for Kenya up to the end of September 2020, which encompasses the first wave of SARS-CoV-2 transmission in the country. We estimate that the first wave of the SARS-CoV-2 pandemic peaked before the end of July 2020 in the major urban counties, with 30-50% of residents infected. Our analysis suggests, first, that the reported low COVID-19 disease burden in Kenya cannot be explained solely by limited spread of the virus, and second, that a 30-50% attack rate was not sufficient to avoid a further wave of transmission.

2.
BMJ Glob Health ; 7(8)2022 08.
Article in English | MEDLINE | ID: covidwho-1968240

ABSTRACT

BACKGROUND: A few studies have assessed the epidemiological impact and the cost-effectiveness of COVID-19 vaccines in settings where most of the population had been exposed to SARS-CoV-2 infection. METHODS: We conducted a cost-effectiveness analysis of COVID-19 vaccine in Kenya from a societal perspective over a 1.5-year time frame. An age-structured transmission model assumed at least 80% of the population to have prior natural immunity when an immune escape variant was introduced. We examine the effect of slow (18 months) or rapid (6 months) vaccine roll-out with vaccine coverage of 30%, 50% or 70% of the adult (>18 years) population prioritising roll-out in those over 50-years (80% uptake in all scenarios). Cost data were obtained from primary analyses. We assumed vaccine procurement at US$7 per dose and vaccine delivery costs of US$3.90-US$6.11 per dose. The cost-effectiveness threshold was US$919.11. FINDINGS: Slow roll-out at 30% coverage largely targets those over 50 years and resulted in 54% fewer deaths (8132 (7914-8373)) than no vaccination and was cost saving (incremental cost-effectiveness ratio, ICER=US$-1343 (US$-1345 to US$-1341) per disability-adjusted life-year, DALY averted). Increasing coverage to 50% and 70%, further reduced deaths by 12% (810 (757-872) and 5% (282 (251-317) but was not cost-effective, using Kenya's cost-effectiveness threshold (US$919.11). Rapid roll-out with 30% coverage averted 63% more deaths and was more cost-saving (ICER=US$-1607 (US$-1609 to US$-1604) per DALY averted) compared with slow roll-out at the same coverage level, but 50% and 70% coverage scenarios were not cost-effective. INTERPRETATION: With prior exposure partially protecting much of the Kenyan population, vaccination of young adults may no longer be cost-effective.


Subject(s)
COVID-19 Vaccines , COVID-19 , COVID-19/prevention & control , Cost-Benefit Analysis , Humans , Kenya/epidemiology , SARS-CoV-2 , Young Adult
3.
Science ; 374(6570): 989-994, 2021 Nov 19.
Article in English | MEDLINE | ID: covidwho-1526450

ABSTRACT

Policy decisions on COVID-19 interventions should be informed by a local, regional and national understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission. Epidemic waves may result when restrictions are lifted or poorly adhered to, variants with new phenotypic properties successfully invade, or infection spreads to susceptible subpopulations. Three COVID-19 epidemic waves have been observed in Kenya. Using a mechanistic mathematical model, we explain the first two distinct waves by differences in contact rates in high and low social-economic groups, and the third wave by the introduction of higher-transmissibility variants. Reopening schools led to a minor increase in transmission between the second and third waves. Socioeconomic and urban­rural population structure are critical determinants of viral transmission in Kenya.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , COVID-19 Nucleic Acid Testing , Communicable Disease Control , Epidemics , Humans , Incidence , Kenya/epidemiology , Models, Biological , Seroepidemiologic Studies , Social Class , Socioeconomic Factors
4.
BMJ Glob Health ; 6(5)2021 05.
Article in English | MEDLINE | ID: covidwho-1504118

ABSTRACT

BACKGROUND: Most of the deaths among neonates in low-income and middle-income countries (LMICs) can be prevented through universal access to basic high-quality health services including essential facility-based inpatient care. However, poor routine data undermines data-informed efforts to monitor and promote improvements in the quality of newborn care across hospitals. METHODS: Continuously collected routine patients' data from structured paper record forms for all admissions to newborn units (NBUs) from 16 purposively selected Kenyan public hospitals that are part of a clinical information network were analysed together with data from all paediatric admissions ages 0-13 years from 14 of these hospitals. Data are used to show the proportion of all admissions and deaths in the neonatal age group and examine morbidity and mortality patterns, stratified by birth weight, and their variation across hospitals. FINDINGS: During the 354 hospital months study period, 90 222 patients were admitted to the 14 hospitals contributing NBU and general paediatric ward data. 46% of all the admissions were neonates (aged 0-28 days), but they accounted for 66% of the deaths in the age group 0-13 years. 41 657 inborn neonates were admitted in the NBUs across the 16 hospitals during the study period. 4266/41 657 died giving a crude mortality rate of 10.2% (95% CI 9.97% to 10.55%), with 60% of these deaths occurring on the first-day of admission. Intrapartum-related complications was the single most common diagnosis among the neonates with birth weight of 2000 g or more who died. A threefold variation in mortality across hospitals was observed for birth weight categories 1000-1499 g and 1500-1999 g. INTERPRETATION: The high proportion of neonatal deaths in hospitals may reflect changing patterns of childhood mortality. Majority of newborns died of preventable causes (>95%). Despite availability of high-impact low-cost interventions, hospitals have high and very variable mortality proportions after stratification by birth weight.


Subject(s)
Hospitals , Infant Mortality , Adolescent , Child , Child, Preschool , Cohort Studies , Humans , Infant , Infant, Newborn , Kenya/epidemiology , Retrospective Studies
5.
BMC Health Serv Res ; 21(1): 740, 2021 Jul 26.
Article in English | MEDLINE | ID: covidwho-1327923

ABSTRACT

BACKGROUND: The COVID-19 pandemic and country measures to control it can lead to negative indirect health effects. Understanding these indirect health effects is important in informing strategies to mitigate against them. This paper presents an analysis of the indirect health effects of the pandemic in Kenya. METHODS: We employed a mixed-methods approach, combining the analysis of secondary quantitative data obtained from the Kenya Health Information System database (from January 2019 to November 2020) and a qualitative inquiry involving key informant interviews (n = 12) and document reviews. Quantitative data were analysed using an interrupted time series analysis (using March 2020 as the intervention period). Thematic analysis approach was employed to analyse qualitative data. RESULTS: Quantitative findings show mixed findings, with statistically significant reduction in inpatient utilization, and increase in the number of sexual violence cases per OPD visit that could be attributed to COVID-19 and its mitigation measures. Key informants reported that while financing of essential health services and domestic supply chains were not affected, international supply chains, health workforce, health infrastructure, service provision, and patient access were disrupted. However, the negative effects were thought to be transient, with mitigation measures leading to a bounce back. CONCLUSION: Finding from this study provide some insights into the effects of the pandemic and its mitigation measures in Kenya. The analysis emphasizes the value of strategies to minimize these undesired effects, and the critical role that routine health system data can play in monitoring continuity of service delivery.


Subject(s)
COVID-19 , Pandemics , Humans , Kenya/epidemiology , Pandemics/prevention & control , Qualitative Research , SARS-CoV-2
6.
BMJ Glob Health ; 6(3)2021 03.
Article in English | MEDLINE | ID: covidwho-1148159

ABSTRACT

We have worked to develop a Clinical Information Network (CIN) in Kenya as an early form of learning health systems (LHS) focused on paediatric and neonatal care that now spans 22 hospitals. CIN's aim was to examine important outcomes of hospitalisation at scale, identify and ultimately solve practical problems of service delivery, drive improvements in quality and test interventions. By including multiple routine settings in research, we aimed to promote generalisability of findings and demonstrate potential efficiencies derived from LHS. We illustrate the nature and range of research CIN has supported over the past 7 years as a form of LHS. Clinically, this has largely focused on common, serious paediatric illnesses such as pneumonia, malaria and diarrhoea with dehydration with recent extensions to neonatal illnesses. CIN also enables examination of the quality of care, for example that provided to children with severe malnutrition and the challenges encountered in routine settings in adopting simple technologies (pulse oximetry) and more advanced diagnostics (eg, Xpert MTB/RIF). Although regular feedback to hospitals has been associated with some improvements in quality data continue to highlight system challenges that undermine provision of basic, quality care (eg, poor access to blood glucose testing and routine microbiology). These challenges include those associated with increased mortality risk (eg, delays in blood transfusion). Using the same data the CIN platform has enabled conduct of randomised trials and supports malaria vaccine and most recently COVID-19 surveillance. Employing LHS principles has meant engaging front-line workers, clinical managers and national stakeholders throughout. Our experience suggests LHS can be developed in low and middle-income countries that efficiently enable contextually appropriate research and contribute to strengthening of health services and research systems.


Subject(s)
Child Health Services/standards , Delivery of Health Care/standards , Health Services Accessibility/standards , Health Services Research , Quality Improvement , COVID-19/epidemiology , COVID-19/prevention & control , Child , Child, Preschool , Developing Countries , Diarrhea/epidemiology , Diarrhea/prevention & control , Humans , Infant , Infant, Newborn , Kenya/epidemiology , Malaria/epidemiology , Malaria/prevention & control , Pandemics , Pneumonia/epidemiology , Pneumonia/prevention & control , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL